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Positional Astronomy: Chapter 00. Introduction. 
 

These pages were created by Fiona Vincent in 1998 to assist the students in 

the lectures on Positional Astronomy for second-year undergraduate at the 

University of St.Andrews, Scotland.  Now are maintained as a help to the 

students of St.Andrews as well as a service to the world-wide community. 

This document was converted to . pdf format by Alfonso Pastor in 2005 as 

a tribute to Fiona Vincent in order to allow this extraordinary lectures to be 

loaded and  read in computers and eBooks without the possibility of  

Internet connection. 
You are welcome to link to Fiona Vincent´s pages from your own pages, but 

please do not reproduce any of this material without Fiona Vincent’s 

acknowledgement. 

 

Notes about the pages: 
 

 (1) Many of the equations of the original pages in. html format use 

 Greek letters as symbols.   

 (If you try to link to the original pages,  if your browser does not  

 distinguish between "a,b" and "α, β" (the Greek letters "alpha, beta") 

 then you will not be able to make much sense of the equations. ) 

 Here in the .pdf version this problem does not exist unless your reader 

 is missing the Greek characters set. 

 

 (2) These pages use "classical" definitions and terminology:  

 that is, those used previous to the International Astronomical Union's 

 2000 resolutions  at the site: 

  http://syrte.obspm.fr/IAU_resolutions/Resol-UAI.htm 

 

(For more information about time scales and Earth Rotation Models, see  

USNO Circular No.179  ) at : http://www.usno.navy.mil/USNO/astronomical-

applications/publications/Circular_179.pdf 

This course is intended to address the following problems:  
 

1.- How to describe the position of an object in the sky.  

2.- Which different coordinate systems are appropriate in different situations.  

3.- How to transform between coordinate systems.  

4.- What corrections have to be applied.  
 

Objects in the sky appear to be positioned on the celestial sphere, an 

indefinite distance away.  

A sphere is a three-dimensional object, but its surface is two-dimensional.  

Spherical geometry is carried out on the surface of a sphere: it resembles 

ordinary (plane) geometry, but it involves new rules and relationships.  



Copyright : Fiona Vincent 1998.  Revised and updated on 2003. Converted to .pdf  by Alfonso Pastor on 2005 and revised on 2015 

5 

 

   

  Positional Astronomy: Chapter  01  
The terrestrial sphere  

We will start with a familiar sphere: the Earth (assume for the moment that it 

is spherical), spinning around an axis.  

The North & South Poles are where this axis meets the Earth's surface. The 

equator lies midway between them.  

The equator is an example of a great circle: one whose plane passes through 

the centre of the sphere.  

Every great circle has two poles. We can define these:  

     (a) as the points which are 90° away from the circle, on the surface of the 

 sphere. 

     (b) as the points where the perpendicular to the plane of the great circle 

 cuts the surface of the sphere.  

These two definitions are equivalent.  

The length of a great-circle arc on the surface of a sphere is the angle 

between its end-points, as seen at the centre of the sphere, and is expressed in 

degrees (not miles, kilometres etc.).  

A great circle is a geodesic (the shortest distance between two points) on the 

surface of a sphere,  analogous to a straight line on a plane surface.  

To describe a location X on the surface of the Earth, we use latitude and 

longitude (two coordinates, because the surface is two-dimensional). 
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Draw a great circle from pole to pole, passing through location X: this is a 

meridian of longitude.  

The latitude of X is the angular distance along this meridian from the equator 

to X, measured from -90° at the South Pole to +90° at the North Pole.  

The co-latitude of X is the angular distance from the North Pole to X  

co-latitude = 90° - latitude. 

There is no obvious point of origin for measuring longitude; for historical 

reasons, the zero-point is the meridian which passes through Greenwich (also 

called the Prime Meridian).  

The longitude of X is the angular distance along the equator from the Prime 

Meridian to the meridian through X.  

It may be measured east or west 0° to 360°, or both ways 0° to 180°.  

Small circles parallel to equator are parallels of latitude.  

The circumference of a small circle at any given latitude is  360 * cos(latitude) 

in degrees.  

The length of arc of a small circle between two meridians of longitude is  

     (difference in longitude) * cos(latitude).  

The length of arc of a great-circle distance is always shorter  than the length 

of arc of a small circle, as we shall see in the next section. 

The length of arc of a great- circle distance is called Orthodromic distance. 

Note that a position on the surface of the Earth is fixed using one fundamental 

circle (the equator) and one fixed point on it (the intersection with a meridian 

referred to Greenwich Meridian).  

Celestial navigation used at sea (and in the air) involves spherical 

trigonometry,  so the results are in angular measure (degrees).  

These must be converted to linear measure for practical use.  

We define the nautical mile as 1 arc-minute along a great circle on Earth's 

surface.  

This comes out about 15% greater than the normal "statute" mile (6080 feet 

instead of 5280 feet).  

Note: terrestrial coordinates are actually more complicated than this, because the 

Earth is not really a sphere.  

One source where you can find out more about this is the Ordnance Survey's "Guide to 

coordinate systems in Great Britain".  
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Exercise: 1 
Alderney, in the Channel Islands, has longitude 2°W, latitude 50°N.  

Winnipeg, in Canada, has longitude 97°W, latitude 50°N.  

How far apart are they, in nautical miles, along a parallel of latitude?  
 

Distance along a parallel of latitude is (difference in longitude) x cos(latitude)  

= (97° - 2°) cos(50°) = 61.06°  

But 1° = 60 nautical miles. 

So the distance is 61.06 x 60 = 3663 nautical miles. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 02 
Spherical trigonometry  

Spherical trigonometry note : 

The diagrams on this pages are only correct if the observer is imagined to be at a finite distance from the 

outside of the sphere, as in this diagram.  

 

If the observer is imagined to be infinitely far away, the diagram should be drawn with the z-axis 

emerging from the sphere a little way "in front of" the edge, thus:  

 
 

 

 

 

In my opinion, this version, although equally correct, is slightly more difficult to understand. So 

throughout the rest of these pages, I am using diagrams of the type shown in the next page. 

 

My thanks to Dr Friedrich Firneis of the Austrian Academy of Sciences, to Ryu Izawa of the University 

of Colorado, USA, and to engineering consultant David Bosher, who provided the diagram above for 

helpful discussions on this point.  
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Spherical trigonometry  

A great-circle arc, on the sphere, is the analogue of a straight line, on the 

plane.  

Where two such arcs intersect, we can define the spherical angle either as 

angle between the tangents to the two arcs, at the point of intersection, or as 

the angle between the planes of the two great circles where they intersect at 

the centre of the sphere.  

(Spherical angle is only defined where arcs of great circles meet.)  

A spherical triangle is made up of three arcs of great circles, all less than 

180°.  

The sum of the angles is not fixed, but will always be greater than 180°.  

If any side of the triangle is exactly 90°, the triangle is called quadrantal.  

There are many formulae relating the sides and angles of a spherical triangle.  

In this course we use only two: the sine rule and the cosine rule. 

Consider a triangle ABC on the surface of a sphere with radius = 1.  

 

We use the capital letters A, B, C to denote the angles at these corners; 

we use the lower-case letters a, b, c to denote the opposite sides. 

(Remember that, in spherical geometry, the side of a triangle is the arc of a 

great circle, so it is also an angle.) 
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Now turn the sphere so that A is at the "north pole",  and let arc AB define the 

"prime meridian".  

 

 

 

Set up a system of rectangular axes OXYZ:  

O is at the centre of the sphere;  

OZ passes through A;  

OX passes through arc AB (or the extension of it);  

OY is perpendicular to both.  

 

Find the coordinates of C in this system:  

x = sin(b) cos(A)  

y = sin(b) sin(A)  

z = cos(b)  
 

Now create a new set of axes,  keeping the y-axis fixed and moving the "pole" 

from A to B  (i.e. rotating the x,y-plane through angle c).  

The new coordinates of C are : 

x' = sin(a) cos(180-B) = - sin(a) cos(B) 

y' = sin(a) sin(180-B) =    sin(a) sin(B) 

z' = cos(a)  

The relation between the old and new systems is simply a rotation of the x,z-

axes through angle c:  

x' = x cos(c) - z sin(c)  

y' = y  

z' = x sin(c) + z cos(c)  
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That is:  

- sin(a) cos(B) = sin(b) cos(A) cos(c) - cos(b) sin(c)  

  sin(a) sin(B)  = sin(b) sin(A)  

             cos(a) = sin(b) cos(A) sin(c) + cos(b) cos(c)  
 

These three equations give us the formulae for solving spherical triangles. 

The first equation is the transposed cosine rule, which is sometimes useful 

but need not be memorised.  

 

The second equation gives the sine rule. Rearrange as:  

   sin(a)/sin(A) = sin(b)/sin(B)  

Similarly,  :   sin(b)/sin(B) = sin(c)/sin(C), etc.  

 

So the sine rule is usually expressed as:  

   sin(a)/sin(A) = sin(b)/sin(B) = sin(c)/sin(C)  

 

The third equation gives the cosine rule:  

    cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A)  

and similarly:  

    cos(b) = cos(c) cos(a) + sin(c) sin(a) cos(B)  

    cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C)  

 

Here they are together: 

 

sine rule: 

sin(a)/sin(A) = sin(b)/sin(B) = sin(c)/sin(C)  

 

cosine rule: 

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) 

cos(b) = cos(c) cos(a) + sin(c) sin(a) cos(B) 

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C) 

 

The cosine rule will solve almost any triangle if it is applied often enough.  

The sine rule is simpler to remember but not always applicable. 

Note that both formulae can suffer from ambiguity:  

E.g. if the sine rule yields  

   sin(x) = 0.5,  then x may be 30° or 150°.  

Or, if the cosine rule yields 

   cos(x) = 0.5, then x may be 60° or 300° (-60°).  

In this case, there is no ambiguity if x is a side of the triangle, as it must be 

less than 180°, but there could still be uncertainty if an angle of the triangle 

was positive or negative. 

So, when applying either formula, check to see if the answer is sensible.  

If in doubt, recalculate using the other formula, as a check. 
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Note:Examples from Computing with the Scientific Calculator” from Casio pages: 96-98 

              

Arc Length = S =  r * θ ;   

 * 7917.59 miles 

Distance between two locations in the same meridian = S = r * θ , (θ in radians ) 

Distance between two locations in the same parallel  : 

   D = (longitude a – longitude b ) *  cos (Latitude) 

Conversion to radians:        1º =  radians 

 

    = θº *   =  θ rads , ( in radians ) 

    

          S =  = S, ( in radians) 

 

Conversion to degrees :        Degrees 

Conversion to Nautical Miles: 

S=  ) = S in ( Nautical Miles ) , 1º  60 Nautical Miles 

The Nautical Mile is defined as the Arc length subtended by an angle of 1’ (one Minute) on a circle of  

Diameter = 7917.59 Miles  ;   One Nautical Mile = 1.8532487 Km. 

 

What is the Great Circle distance ( Orthodromic ) between New York (Lat 40º 40’N , lon 73º 

58’ 30’’ W) to Lisbon ( Lat 38º35’ , lon 9º 10’ W) . 

The answer D will be in terms of angle of arc. 

To convert from degrees Nautical Miles use 1º= 60 Nautical Miles 

 cos (D) = sin ( 40º40’) * sin (38º35’) + cos (40º40’) * cos (38º35’) *  

 cos (73º78’30’’ – 9º10’) = 0.6587874 

 acos (0.6587874)  = 48.79280046º 

     48.7954º * 60 = 2927.568028 Nautical Miles 

Distance between two locations:.      Lat1 = δ1   Lat2 = δ2 

      lon1 = α1   lon2 = α2 

      S1 =  α1 ,  δ1   S2 =  α2  ,  δ2 

The standard formula for determining the distance between two locations is: 

          cos (D) = ( sin (δ1) * sin (δ2) ) + (( cos (δ1) cos (δ2)) * cos ( α1 – α2 ) 
The answer will be in terms of the angle of arc D.                                                            

To convert to Nautical  Miles use the formula: Length of Arc 1º= 60 Nautical Miles 
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Exercise:02 

           

Alderney, in the Channel Islands, has longitude 2°W, latitude 50°N.  

Winnipeg, in Canada, has longitude 97°W, latitude 50°N.  

How far apart are they, in nautical miles, along a parallel of latitude?  

Distance along a parallel of latitude is : ( See Exercise 1) 

  D = (difference in longitude) * cos(latitude) = α1- α2 * cos (δ) 

In the example: D = (97° - 2°) cos(50°) = 61.06°  

1° = 60 nautical miles. So the distance is 61.06 x 60 = 3663 nautical miles. 
How far apart are they, in nautical miles, along a great circle arc?  

Distance between two places not in the same parallel : 
Use the cosine rule : 

cos (D) = ( sin (δ1) * sin (δ2) ) + (( cos (δ1) * cos (δ2)) * cos ( α1 – α2 ) 
In the example 

cos (D) = (sin (90-50 ) * sin (90-50)) + ((cos (90-50 )*cos (90-50)) * cos D  = 

   = sin
2 

(40°) + cos
2
(40º)  * cos 95° = 0.5508  

  D =  acos (0.5508) = 56.58°    

To convert to Nautical Miles      56.58º * 60 = 3394.8  nautical miles  

(This is 7% shorter than the 3663 route along a parallel of latitude). 

If you set off from Alderney on a great-circle route to Winnipeg,  

in what direction (towards what azimuth) would you head? 

Use the sine rule:     

sin A / sin (90-50) = sin D / sin (90-50) 

so sin x = sin ( 40°) * sin (95°) / sin (56.58°)  = 0.77 

 so x = 50.1° or 129.9° . 

Common sense says 50.1° (or check using cosine rule to get (90-50)). 

Azimuth is measured clockwise from north, 

    so azimuth is 360° - 50.1° = 309.9°  

(Note that this is 40° north of the “obvious” 270º due-west course.) 
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Positional Astronomy: Chapter  03  
Coordinate systems: the horizontal or "alt-az" system  

The location of an object on the sky is fixed by celestial coordinates 

analogous to the terrestrial latitude/longitude system.  

There are various systems, suitable for different purposes;  each system needs 

a fundamental circle and a fixed point on it.  

The simplest is the horizontal system, which uses the horizon as its 

fundamental circle.  

The poles of this circle are the zenith overhead and the nadir underfoot;  

these are defined by the local vertical (using a plumb-line or similar).  

Draw a vertical circle from the zenith to the nadir through object X.  

 

The altitude (a) of object X is the angular distance along the vertical circle 

from the horizon to X,  

measured from -90° at nadir to +90° at zenith.  

Alternatively, the zenith distance of X is 90° - a. 

(Some authors use h instead of a .)  

Any two objects with the same altitude  

lie on a small circle called a parallel of altitude.  
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To fix a point of origin on horizon,  we look at where the spin axis of the 

Earth intersects the celestial sphere,  at the North and South Celestial Poles.  

The vertical circle through these is called the principal vertical.  

Where this intersects the horizon, it gives the north and south cardinal points  

(the north point is the one nearest the North Celestial Pole).  

Midway between these are the east and west cardinal points;  the vertical 

circle through these is called the prime vertical  (not shown on the diagram), 

at 90° to the principal vertical.  

The azimuth (A) of object X is the angular distance around the horizon from 

the north cardinal point to the vertical circle through X, measured 0°-360° 

westwards (clockwise).  

Note that the altitude of the North Celestial Pole is equal to the latitude of 

the observer.  

 

Comparison with the terrestrial system:  

Terrestrial …………………..… Alt-Az 

Equator ……………………………... Horizon 

North Pole…………………………... Zenith 

South Pole……………………….. Nadir 

latitude……………………………… Altitude 

Co-latitude……………………….Zenith distance 

Parallel of latitude………………. Parallel of altitude 

Meridian of longitude…………... Vertical circle 

Greenwich Meridian………….… Principal Vertical 

Longitude……………………….. Azimuth  
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Exercise: 3 

From St.Andrews, at 6 pm on 1998 February 2nd,  

the Moon appeared at altitude +39°, azimuth 196°,  

while Saturn is at altitude +34°, azimuth 210°.  

 

How far apart did the two objects appear?  

 

 

 

The difference in azimuth is 14°. 

Use the cosine rule: 

cos MS = cos MZ cos ZS + sin MZ sin ZS cos Z = 0.98 

so MS = 12.3° 

 

Which was further east? 

The Moon is further east, and higher up, than Saturn. 
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Positional Astronomy: Chapter  04 
Coordinate systems: the first equatorial or "HA-dec." system  

Any coordinates given in the horizontal or alt-az system  

depend on the place of observation (because the sky appears different from 

different points on Earth) and on the time of observation (because the Earth 

rotates, and each star appears to trace out a circle centred on North Celestial 

Pole).  

We need a system of celestial coordinates which is fixed on the sky, 

independent of the observer's time and place.  

For this, we change the fundamental circle from the horizon to the celestial 

equator.  

The North Celestial Pole (NCP) and the South Celestial Pole (SCP) lie 

directly above North and South Poles of Earth.  

The NCP and SCP form the poles of a great circle on celestial sphere, 

analogous to the equator on Earth.  

It is called the celestial equator and it lies directly above the Earth's equator.  

Any great circle between the NCP and the SCP is a meridian.  

The one which also passes through the zenith and the nadir is "the" celestial 

meridian, or the observer's meridian. (It is identical to the principal vertical.)  

This provides our new zero-point; in this case, we use the point where it 

crosses the southern half of the equator.  

(Space left intentionally blank for notes) 
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A typical star comes up over the horizon (rises) somewhere in the eastern 

sector; it moves round to the right, climbing higher in the sky; it reaches its 

highest point when it's due south, i.e. on the meridian; it continues moving 

right, and sinking lower; and it disappears below the horizon (sets) somewhere 

in the western sector. 

(Note that this is only true in the northern hemisphere;in the southern 

hemisphere, the star will move to the left, and reach its highest point when it's 

due north. 

In what follows, I assume we are in the northern hemisphere.)  

The star's highest point, due south, is called (upper) transit or culmination.  

The star will also cross the meridian again, in the opposite direction, at the 

lowest point in its daily path.  

This is called lower transit, and it occurs below the horizon unless the star is 

circumpolar.  

Stars close to North Celestial Pole never set; if a star's north polar distance is 

less than the altitude of the Pole, then that star cannot reach the horizon.  

These are defined as north circumpolar stars.  

Similarly, stars close to the South Celestial Pole will never rise: these are 

south circumpolar stars.  

All others are equatorial stars, which rise and set. 

 



Copyright : Fiona Vincent 1998.  Revised and updated on 2003. Converted to .pdf  by Alfonso Pastor on 2005 and revised on 2015 

19 

 

The division between circumpolar and equatorial stars  depends on the altitude 

of the North Celestial Pole, i.e. on the observer's latitude.  

To fix the coordinates of an object X on the celestial sphere,  draw the 

meridian through X.  

The declination δ of X is the angular distance  from the celestial equator to X,  

measured from -90° at the SCP to +90° at the NCP.  

Any point on celestial equator has declination 0°.  

Alternatively, the North Polar Distance of X = 90° - δ.  

Any two objects with the same declination lie on a parallel of declination.  

The Hour Angle or HA (H) of object X  is the angular distance between the 

meridian of X and "the" celestial meridian.  

It is measured westwards in hours, 0h-24h, since the Earth rotates 360° in 24 

hours. 

time interval  angle  

1 hour 15° 

1 minute 15' 

1 second 15" 

 

An object on the meridian (culminating) has H = 0h.  

Its HA then steadily increases as the object moves westwards.  

At lower transit, when it is due north (and possibly below the horizon), 

 H = 12h.  

At 

 H = 23h, it is just one hour short of culminating again.  

This system is still dependent on the time of observation,  but an object's 

declination generally doesn't change rapidly,  and its Hour Angle can be 

determined quite simply, given the time and the location.  

A telescope can be built on an equatorial mounting, with its axis pointing at 

the NCP.  

Once it is set on a star, if the telescope rotates about its polar axis at the 

correct speed (15° per hour), the star will stay in view. 
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Exercise:04 

The most northerly star of the Southern Cross, γ Crucis, has declination -57°. 

At what latitude will it just be visible?  

The star is at S (just on the horizon), 57° from the equator.  

So at this place, it must be 33° from the equator to the zenith.  

So it must be 57° from the zenith to the north celestial pole.  

So it must be 33° from the pole to the northern horizon. 

But the altitude of the north celestial pole is the latitude of the place. 

So the latitude is 33°N. 

So any observer north of latitude 33°N is unable to see the Southern Cross. 

 

 

(Space left intentionally blank for notes) 
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At what latitude will it pass directly overhead? 

The star is at Z, the zenith. 

It is 57° from there to the equator,  

so at this place it must be 33° from the equator to the horizon.  

So P is 57° below the northern horizon. 

So the latitude is 57°S. 

Note: as a general rule, if a star of declination x° passes overhead, 

then the place has latitude x°. 

 

 

 

 
 

 

 
(Space left intentionally blank for notes) 
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At what latitudes will it never set?  

Suppose the star is at S, just on the southern horizon. 

It is 57° from S down to the equator 

so it must be 33° from S up to the south celestial pole. 

If the SCP is 33° above the southern horizon, 

then the NCP must be 33° below the northern horizon. 

So the latitude here is -33°, or 33°S.  

The star will never set (it will be circumpolar)  

for any observer south of 33°S. 

 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 05 
Coordinate systems: the second equatorial or "RA-dec." system  

 

Coordinates in the first equatorial system (HA and declination)  still depend on the time 

of observation.  

Now we change the zero-point for our coordinates.  

We choose a fixed point on the celestial equator, called the vernal equinox, or the First 

Point of Aries.  

The symbol for this is the astrological symbol for Aries:  

(The function of this point will become clearer later on.) 

The declination (δ) of object X is measured in the same way as before.  

The Right Ascension or RA (α) of object X is the angle along the celestial equator 

measured eastwards from the vernal equinox to the meridian of X.  

Like HA, RA is measured in hours 0-24h, but it goes in the opposite direction.  

Comparison of these celestial coordinate systems with the terrestrial system: 

terrestrial  alt-az HA-dec. RA-dec. 
equator  horizon celestial equator celestial equator 

North Pole  zenith North Celestial Pole North Celestial Pole 
South Pole  nadir South Celestial Pole South Celestial Pole 

latitude  altitude declination Declination 

co-latitude  zenith distance North Polar Distance North Polar Distance 
parallel of latitude  parallel of altitude parallel of declination parallel of declination 

meridian of longitude  vertical circle meridian Meridian 

Greenwich Meridian  Principal Vertical celestial meridian vernal equinox 
longitude  azimuth  Hour Angle Right Ascension 

The Right Ascension and declination of a star do not normally change over short 

periods of time;  but the Hour Angle changes constantly with time.  

Consequently we have to find a way of defining the time. 
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Exercise:05 

 
The four stars at the corners of the “Great Square of Pegasus” are: 

star R.A. declination 

α And 00h 08m +29°05'  

β Peg 23h 04m +28° 05'  

α Peg 23h 05m +15° 12'  

γ Peg 00h 13m +15° 11' 

Calculate the lengths of the two diagonals of the “Square”. 

 

 

It is necessary to plot the four stars, at least approximately, 

to find out which pairs form the diagonals! 

 

Then, to find the length of each diagonal, use the cosine rule: 

cos S1S2 = cos S1P cos S2P + sin S1P sin S2P cos P 

 

 

This gives α And to α Peg = 20.1° 

and β Peg to γ Peg = 20.5°. 
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Positional Astronomy: Chapter 06  
Sidereal Time 

Which stars are on your local meridian? 

It depends on the time at which you observe. 

In fact, it depends on both the date and the (clock) time, because the Earth is 

in orbit around the Sun. 

 

Consider the Earth at position E1 on the diagram.  

The star shown is on the meridian at midnight by the clock. 

But three months later, when the Earth reaches position E2 , the same star is 

on the meridian at 6 p.m. by the clock. 

Our clocks are set to run (approximately) on solar time (sun time). 

But for astronomical observations, we need to use sidereal time (star time). 

Consider the rotation of the Earth relative to the stars.  

We define one rotation of Earth as one sidereal day, measured as the time 

between two successive meridian passages of the same star. 

 

Because of the Earth's orbital motion, this is a little shorter than a solar day.  

(In one year, the Earth rotates 365 times relative to the Sun, 

but 366 times relative to the stars.  

So the sidereal day is about 4 minutes shorter than the solar day.) 
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We define Local Sidereal Time (LST) to be 0 hours  when the vernal equinox 

is on the observer's local meridian.  

One hour later, the local Hour Angle (LHA) of the equinox is +1h (by the 

definition of Hour Angle),  and the Local Sidereal Time is 1h.  

So at any instant, Local Sidereal Time = Local Hour Angle of the vernal 

equinox. 

Here's an alternative definition:  

Suppose that LST = 1h.  

This means that the vernal equinox has moved 15° (1h) west of the meridian, 

and now some other star X is on the meridian.  

But the Right Ascension of star X is the angular distance from the vernal 

equinox to X = 1h = LST.  

So at any instant, Local Sidereal Time = Right Ascension of whichever 

stars are on the meridian.  

And in general, the Local Hour Angle of a star = Local Sidereal Time - RA of 

the star. 

However, at any instant different observers, to the east or west, will have 

different stars on their local meridians. 

We need to choose one particular meridian to act as a reference point; we 

choose Greenwich. 

We define the Greenwich Hour Angle of X  

as the Hour Angle of X relative to the celestial meridian at Greenwich.  

Then we can define Greenwich Sidereal Time (GST)  

as the Greenwich Hour Angle of the vernal equinox.  

This gives the important relation  

LST = GST - longitude west.  

 

Recall that the Local Hour Angle (LHA) of a star = Local Sidereal Time - RA 

of the star.  

In particular, the Greenwich Hour Angle (GHA) of a star = Greenwich 

Sidereal Time - RA of the star.  

Combining these, we find 

LHA(star) = GHA(star) - longitude west.  

For a more detailed discussion of Sidereal Time and related topics, see 

Chapter 2 of USNO Circular No.179.  
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Exercise:06 

At midnight on 1998 February 4th,  

Local Sidereal Time at St.Andrews was 8h45m.  

St.Andrews has longitude 2°48'W.  

What was the Local Hour Angle of Betelgeuse (R.A. = 5h55m) at midnight?  

RA of Betelgeuse = 5h 55m 

At midnight, LST = 8h 45m 

Local Hour Angle = LST - RA  

so the Local Hour Angle of Betelgeuse was 8h 45m - 5h 55m = 2h 50m. 

At what time was Betelgeuse on the meridian at St.Andrews? 

On the meridian, Local Hour Angle = 0,  

so if Betelgeuse was on the meridian at St.Andrews,  

LST in St.Andrews = RA of Betelgeuse = 5h 55m. 

(Recall that LST = RA of stars on local meridian.) 

We are told that the LST was 8h 45m at midnight. 

But at midnight, Betelgeuse was at Hour Angle 2h 50m,  

so it would be on the meridian 2h 50m before midnight, 

that is, at 21h 10m. 

So Betelgeuse was on the meridian in St.Andrews at 21h 10m. 

At what time was Betelgeuse on the meridian at Greenwich? 

St.Andrews is 2°48' west of Greenwich = 0h 11m (divide by 15). 

So Betelgeuse was on the Greenwich meridian  

11 minutes before it reached the St.Andrews meridian.  

i.e. at 20h 59m. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter  07 
Conversion between horizontal and equatorial systems 

To convert between the horizontal and equatorial coordinates for an object X,  

we use a spherical triangle often called "The" Astronomical Triangle: XPZ,  

where Z is the zenith, P is the North Celestial Pole, and X is the object.  

The sides of the triangle: 

   PZ is the observer's co-latitude = 90°-φ. 

   ZX is the zenith distance of X = 90°-a. 

   PX is the North Polar Distance of X = 90°-δ. 

The angles of the triangle: 

   The angle at P is H, the local Hour Angle of X. 

   The angle at Z is 360°-A, where A is the azimuth of X. 

   The angle at X is q, the parallactic angle. 

We assume we know the observer’s latitude φ and the Local Sidereal Time 

LST. 

(LST may be obtained, if necessary, from Greenwich Sidereal Time and 

observer’s longitude.)  
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To convert from Equatorial to Horizontal coordinates: 

Given RA α and declination δ, we have  

Local Hour Angle H = LST - RA, in hours;  

convert H to degrees (multiply by 15).  

Given H and δ, we require azimuth A and altitude a. 

By the cosine rule: 

cos(90°-a) = cos(90°-δ) cos(90°-φ) + sin(90°-δ) sin(90°-φ) cos(H) 

which simplifies to: 

sin(a) = sin(δ) sin(φ) + cos(δ) cos(φ) cos(H) 
This gives us the altitude a. 

By the sine rule:  

sin(360°-A)/sin(90°-δ) = sin(H)/sin(90°-a) 

which simplifies to: 

- sin(A)/cos(δ) = sin(H)/cos(a) 

i.e. sin(A) = - sin(H) cos(δ) / cos(a) 

which gives us the azimuth A. 

Alternatively, use the cosine rule again: 

cos(90°-δ) = cos(90°-φ) cos(90°-a) + sin(90°-φ) sin(90°-a) cos(360°-A) 

which simplifies to  

sin(δ) = sin(φ) sin(a) + cos(φ) cos(a) cos(A) 

Rearrange to find A:  

cos(A) = { sin(δ) - sin(φ) sin(a) } / cos(φ) cos(a) 
which again gives us the azimuth A. 

Here are all the equations together: 
H = t - α 

sin(a) = sin(δ) sin(φ) + cos(δ) cos(φ) cos(H) 

sin(A) = - sin(H) cos(δ) / cos(a) 

cos(A) = { sin(δ) - sin(φ) sin(a) } / cos(φ) cos(a) 

(Space left intentionally blank for notes) 
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To convert from Horizontal to Equatorial coordinates: 

Given φ, a and A, what are α and δ? 

Start by using the cosine rule to get δ, as shown above:  

sin(δ) = sin(a)sin(φ) + cos(a) cos(φ) cos(A) 

We can now use the sine rule to get H, using the same formula as above:  

sin(H) = - sin(A) cos(a) / cos(δ)  
Or use the cosine rule instead:  

sin(a) = sin(δ)sin(φ) + cos(δ) cos(φ) cos(H) 

and rearrange to find H:  

cos(H) = { sin(a) - sin(δ) sin(φ) } / cos(δ) cos(φ) 

Having calculated H, ascertain the Local Sidereal Time t.  

Then the R.A. follows from  

 α = t – H . 

Here are all the equations together:  
sin(δ) = sin(a)sin(φ) + cos(a) cos(φ) cos(A)  

sin(H) = - sin(A) cos(a) / cos(δ)  

cos(H) = { sin(a) - sin(δ) sin(φ)} / cos(δ) cos(φ)  

α = t – H 

(Space left intentionally blank for notes) 
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Exercise: 07 

Prove that the celestial equator cuts the horizon at azimuth 90° and 270°,  

at any latitude (except at the North and South Poles).  

 

 

 

Draw "the" triangle again. 

We require the azimuth A of point X,  

where X is on the horizon (i.e. a=0)  

and also on the equator (i.e. δ=0) 

Apply the cosine rule:  

cos PX = cos PZ cos XZ + sin PZ sin XZ cos Z 

to get 0 = 0 + sin (90-φ) cos A 

Since 90°-φ is not 0 (we are not at the Poles),  

cos A must be 0 

so A = 90° or 270° . 

(Space left intentionally blank for notes) 
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At what angle does the celestial equator cut the horizon, at latitude φ ? 

 

 

Use the cosine formula: 

cos SY = cos SW cos YW + sin SW sin YW cos W 

This gives cos (90°-φ) = 0 + cos x 

So the angle x is 90°-φ. 

The celestial equator cuts the horizon at an angle of 90°-φ 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 08 
The Galactic System of Coordinates 

The equatorial system of coordinates (Right Ascension and declination) is the 

one most often used.  

But the galactic system is sometimes more useful,  

e.g. for seeing how objects are distributed with respect to the galactic plane.  

Galactic coordinates 

 
 

In this system, the fundamental great circle is the galactic equator,  

which is the intersection of the galactic plane with celestial sphere,  

with corresponding galactic poles.  

We define the North Galactic Pole as that pole in same hemisphere as the 

North Celestial Pole.  

The positions of the poles were determined by the International Astronomical 

Union (IAU) in 1959. 

To fix the galactic coordinates of object X, draw a great circle between the 

two galactic poles, passing through X.  
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The galactic latitude (b) of object X is the angular distance on this circle 

from galactic equator to X, from - 90° at South Galactic Pole to +90° at North 

Galactic Pole.  

The zero-point for longitude is the centre of galaxy; again, the position was 

fixed by the IAU.  

The galactic longitude (l) of object X is the angular distance around the 

galactic equator from the centre of the galaxy to the great circle through X, 

measured eastwards 0-360°.  

Although later research may come up with better values for the positions of 

the galactic poles and the centre of the galaxy,  the IAU values will still be 

used to determine this coordinate system. 

To convert between galactic and equatorial coordinates,  draw the spherical 

triangle with points at P (North Celestial Pole), G (North Galactic Pole) and 

X, and apply the sine and cosine rules. 

 

 

Exercise:08 

The North Galactic Pole is at Right Ascension 12h49m, declination +27°24'.  

What is the tilt of the galactic plane to the celestial equator? 

This one is really easy! 

 

The distance from the North Celestial Pole P to the North Galactic Pole G  

is just (90°- declination of G) = 62.6°.  

So this is also the tilt of the galactic plane to the equator. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 09 
Ecliptic coordinates 

All the objects considered so far have been "fixed stars",  which keep almost 

constant values of Right Ascension and declination.  

But bodies within the Solar System change their celestial positions. 

The most important one to consider is the Sun.  

The Sun's declination can be found by measuring its altitude when it's on the 

meridian (at midday).  

The Sun's Right Ascension can be found by measuring the Local Sidereal 

Time of meridian transit.  

We find that the Sun's RA increases by approximately 4 minutes a day, and its 

declination varies between +23°26' and -23°26'.  

This path apparently followed by Sun is called the ecliptic.  
 

 

The reason the Sun behaves this way is that the Earth's axis is tilted to its 

orbital plane.  

The angle of tilt is +23°26', which is called the obliquity of the ecliptic 

(symbol ε).  
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Any two great circles intersect at two nodes.  

The node where the Sun crosses the equator from south to north (the 

ascending node) is called the vernal (or spring) equinox. 

The Sun passes through this point around March 21st each year.  

This is the point from which R.A. is measured, so here RA = 0h.  

At RA = 12h, the descending node is called the autumnal equinox; the Sun 

passes through this point around September 23rd each year.  

At both these points, the Sun is on the equator, and spends 12 hours above 

horizon and 12 hours below.  

("Equinox" means "equal night": night equal to day.) 

The symbols used for the spring and autumn equinoxes, and , 

are the astrological symbols for Aries and Libra. 

The most northerly point of the ecliptic is called (in the northern hemisphere)  

the Summer Solstice (RA = 6h): the Sun passes through this point around 

June 21st each year. 

The most southerly point is the Winter Solstice (RA = 18h); the Sun passes 

through this point around December 21st each year.  

At the northern Summer Solstice, the northern hemisphere of Earth is tipped 

towards Sun, giving longer hours of daylight and warmer weather  (despite the 

fact that Earth's slightly elliptical orbit takes it furthest from the Sun in July!)  

Thus the Sun's motion is simple when referred to the ecliptic;  also the Moon 

and the planets move near to the ecliptic.  

So the ecliptic system is sometimes more useful than the equatorial system 

for solar-system objects. 
 

(Space left intentionally blank for notes) 
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In the ecliptic system of coordinates, the fundamental great circle is the 

ecliptic.  

The zero-point is still the vernal equinox.  

Take K as the northern pole of the ecliptic, K' as the southern one.  

To fix the ecliptic coordinates of an object X on the celestial sphere, draw the 

great circle from K to K' through X.  

The ecliptic (or celestial) latitude of X (symbol β) is the angular distance 

from the ecliptic to X, measured from -90° at K' to +90° at K.  

Any point on the ecliptic has ecliptic latitude 0°.  

The ecliptic (or celestial) longitude of X (symbol λ) is the angular distance 

along the ecliptic from the vernal equinox to the great circle through X.  

It is measured eastwards (like R.A.), but in degrees, 0°-360°.  

To convert between ecliptic and equatorial coordinates, use the spherical 

triangle KPX.  
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Exercise:9a 

The Moon’s orbit is tilted at 5°8' to the ecliptic.  

What is the lowest latitude from which the Moon may never set (the Moon’s 

“arctic circle”)? 

Would the Moon always be circumpolar, at this latitude?  

 

 

 

 

 

The maximum height of the ecliptic above the equator is ε = +23°24'. 

The Moon can get 5°8' above this, i.e. up to +28°32'. 

So the Moon's maximum declination could be = +28°32'. 

This is when at its “major standstill” 

 

An object of declination δ will be circumpolar  at latitude 90°-δ, 

When the Moon is at its maximum declination: 

 90 - δ = 90 – 28º 32´ = 61°28'.latitude 

 

So when the Moon is at its greatest possible declination, it appears circumpolar from 

any latitude north of 61°28'N. 

 

(The northern tip of Shetland is at latitude 60°52'.) 

Would the Moon always be circumpolar, at this latitude?  

No; only at a “major standstill” (When at its greatest declination ) 

Sometimes the Moon’s orbit will be inclined the other way to the ecliptic,  and it will 

reach a maximum height of only 23°24' - 5°8' = 18°16'.  

This is its “minor standstill”.(When at its lower declination) 

(The interval between major standstills is 18.6 years.) 
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Exercise:9b 

Show that, for any object on the ecliptic:  

tan(δ) = sin(α) tan(ε),  

α is the object's Right Ascension; δ its declination,  

ε is the obliquity of the ecliptic. 

 
 

 

Use the cosine rule : 

cos KX = cos PX cos KP + sin PX sin KP cos P 

On the ecliptic, latitude β = 0 we have : 

cos 90° = cos(90°-δ) cos(ε)  

+ sin(90°-δ) sin(ε) cos(90°+α)  

i.e. 0 = sin(δ) cos(ε) - cos(δ) sin(ε) sin(α)  

Divide throughout by cos(δ) cos(ε) to get  

tan(δ) = tan(ε) sin(α) 
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Positional Astronomy: Chapter 10 
The relation between ecliptic and equatorial coordinates 

Draw the triangle KPX, where P is the North Celestial Pole, K is the north 

pole of the ecliptic, and X is the object in question. 

Apply the cosine rule:  

cos(90°-δ) = cos(90°-β) cos(ε) + sin(90°-β) sin(ε) cos(90°-λ)  

i.e. sin(δ) = sin(β) cos(ε) + cos(β) sin(ε) sin(λ) 

Alternatively, apply the same rule to the other corner, and get:  

cos(90°-β) = cos(90°-δ) cos(ε) + sin(90-δ) sin(ε) cos(90°+α)  

i.e. sin(β) = sin(δ) cos(ε) - cos(δ) sin(ε) sin(α) 

Now try applying the sine rule to the same triangle,  

sin(90°-β) / sin(90°+α) = sin(90°-δ) / sin(90°-λ)  

i.e. cos(λ) cos(β) = cos(α) cos(δ) 

 

 

Grouping these three relations together, we have:  

sin(δ) = sin(β) cos(ε) + cos(β) sin(ε) sin(λ)  

sin(β) = sin(δ) cos(ε) - cos(δ) sin(ε) sin(α)  
cos(λ) cos(β) = cos(α) cos(δ) 



Copyright : Fiona Vincent 1998.  Revised and updated on 2003. Converted to .pdf  by Alfonso Pastor on 2005 and revised on 2015 

41 

 

Exercise 10 

Aldebaran has Right Ascension 4h36m, declination +16°31'.  

What are its ecliptic coordinates? 

First use  

sin(β) = sin(δ) cos(ε) - cos(δ) sin(ε) sin(α)  

where α = 4h36m = 69.00°, δ = 16.52°, ε = 23.43°  

This gives β = -5.45°. 

Now use  

cos(λ) cos(β) = cos(α) cos(δ)  

to obtain λ = 69.81°. 

So the ecliptic co-ordinates of Aldebaran are 

λ = 69.81°, β = -5.45°. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 11 
The Sun's motion, and its effect on time-keeping 

In the ecliptic system, the Sun's coordinates are fairly simple,  because its 

ecliptic latitude is 0° at all times, while its ecliptic longitude constantly 

increases.  

However, the Sun's longitude does not increase at a steady speed of exactly 

360° a year.  

And it's important to know the Sun's position,  because it's used for normal 

time-keeping (solar time, rather than sidereal time). 

By Kepler's Second Law, the Earth orbits faster at perihelion and slower at 

aphelion.  

So the Sun appears to move fastest along ecliptic in January and slowest in 

July.  

We can invent an imaginary Sun (the dynamical mean Sun) which coincides 

with the true Sun when the Earth is at perihelion,  but moves along the ecliptic 

at a constant speed.  

The true Sun appears to move faster than the dynamical mean Sun when the 

Earth is around perihelion,  and slower when the Earth is near aphelion:  one 

cycle per year. 

However, an object moving at a constant speed along the ecliptic is still 

moving at a varying speed with respect to the equator,  since the ecliptic is 

tilted to the equator.  

We invent another imaginary Sun, called simply the mean Sun,  which moves 

along the equator at constant speed;  the dynamical mean Sun appears to lag 

behind this where the ecliptic is steeply tilted to the equator (around the 

equinoxes) and catch up where it's nearly parallel (around the solstices): two 

cycles per year.  

Combining these two effects gives the total difference in time between the 

true Sun and the mean Sun, which is called the equation of time (the solid 

black line on the diagram). 
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The true Sun is about 14 minutes late, compared to the mean Sun, around 10th 

February, about 4 minutes early around May 15th, about 6 minutes late around 

July 25th, and about 16 minutes early around November 5th. 

The interval between two meridian transits of the mean Sun is the mean solar 

day.  

The upper transit of the mean Sun across the local meridian marks midday, 

local mean time.  

Greenwich Mean Time (GMT) is defined as midday when the mean Sun 

crosses the meridian of Greenwich.  

Apparent solar time, as measured by the the true Sun (e.g. on a sundial),  

may differ from GMT for three reasons.  

Firstly, because of the equation of time,  

Secondly, because of the longitude of the observer (the further west, the later 

the Sun will cross the meridian). 

Thirdly, because of the "Summer Time". 

Britain uses GMT as standard time in winter, adding one hour in summer.  

Most other countries adopt their own standard time, suitable for their own 

longitude (large countries may have several time-zones), differing from GMT 

by a set amount.  

 

In practice, the Earth's rotation is not quite constant.  

Time is now regulated by atomic clocks, and called Coordinated Universal 

Time (UTC), but this is artificially kept within 1 second of GMT by adding a 

"leap second" when necessary.  

Astronomers also use Terrestrial Time (TT, formerly called Ephemeris 

Time, ET) for describing the motions of solar-system bodies.  

The difference TT-UTC is called "delta-T". 
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At any location, local mean time and local sidereal time agree at the autumn 

equinox. (Why? Because, at the autumn equinox, the Right Ascension of the 

mean Sun is 12 hours, and the mean Sun is on the local meridian at 12h, local 

mean time.)  

But sidereal time runs faster than solar time, by one day a year,  or 

approximately  3.94 minutes a day. 

After the Exercise about the topic of time, we will return to the position of an 

object in the sky. 

There are various physical factors which may change the apparent position of 

an object. 

 

Exercise 11: 

On April 1st, what is the Sun's approximate ecliptic longitude? 

At the spring equinox, on or around March 21st,  

the Sun's ecliptic longitude is exactly 0°.  

11 days have elapsed since then,  

so the Sun's longitude will be approximately 11°. 

(Only approximately,  

because the ellipticity of the Earth's orbit means that the Sun does not move 

around the ecliptic at a steady speed.) 

And approximately what is Greenwich Sidereal Time at midnight on April 

1st? 

GST and GMT are the same at the autumn equinox,  

so they are exactly 12 hours out of phase at the spring equinox.  

So GST is 12h at midnight on March 21st, approximately.  

Eleven days later, on April 1st, 

GST will have got ahead of GMT by 11 x 3.94 minutes = 43.3 minutes.  

So GST at midnight on April 1st will be approximately 12h43m. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 12 
The Moon 

The Moon always keeps the same face turned towards the Earth. 

How much we see of that face depends on the direction of the Sun: 

we only see the part which is illuminated by sunlight, 

as shown in the diagrams below. 
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Synodic month 

 

 
 

The interval between one New Moon and the next is the synodic month; 

it averages 29.53 days. 

However, because the Earth is orbiting the Sun, the Moon will return to the 

same place relative to the stars in a shorter interval – the sidereal month; this 

averages 27.32 days. 

Diagram shows the Moon at Full, and lined up with a certain star, at time t0 . 

It is lined up with that star again at time t1 , after one sidereal month, but it 

doesn't reach Full again until time t2 , after one synodic month.  
 

The Moon's actual motion is extremely complicated: it orbits the Earth in an 

elliptical orbit, tipped at an angle to the Earth's own orbital plane (the 

ecliptic); and its orbit is constantly being perturbed  by the gravitational 

influence of the Sun. 

This is not the place for the full theory of the Moon's motion. 

However, there follows some simple approximations which will  help to 

determine when the Moon will be or not visible. 
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1. When will the Moon transit the meridian? 

At New Moon, the Moon lies in the same direction as the Sun. (Owing to the 

tilt of the Moon's orbit,  it does not generally pass directly in front of the Sun.) 

The Moon then moves eastwards, relative to the Sun. 

It moves 360° in 29.53 days,  at which time it is lined up with the Sun again 

for the next New Moon.  

Thus it moves about 12.2° each day, relative to the Sun; which corresponds to 

lagging behind the Sun, as it crosses the sky, by about 48.8 minutes of time 

each day. 

So, if you know the "age" of the Moon (that is, how many days since the last 

New Moon), you can calculate how much later the Moon will cross the sky, 

compared to the Sun. 

The Sun crosses the meridian at noon (you can be more precise than this, if 

you know your longitude and the Equation of Time). 

So you can calculate the time at which the Moon will cross the meridian. 

The result will not be very accurate, since the Moon's motion is not uniform, 

but should be correct to within an hour. 

(Space left intentionally blank for notes) 
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2. When will the Moon rise and set? 

If the Moon were always on the celestial equator, it would always rise 6 hours 

before transit, and set 6 hours after transit. 

We know that the Sun does not keep to the celestial equator. 

It lies on the equator at the equinoxes, in March and September, but its 

declination varies between 23.4°N in June and 23.4°S in December. 

     At the equinoxes, anywhere in the world, the Sun rises due east, 6 hours 

before noon, and sets due west, 6 hours after noon. 

     But at the summer (June) solstice, in latitudes north of 66.6°N, 

the Sun never sets at all! (This defines the Arctic Circle.) 

In latitudes around 58°N, the Sun rises in the north-east, about 9 hours before 

noon, and sets in the north-west, about 9 hours after noon. 

     Similarly, at the winter (December) solstice, in the Arctic Circle the Sun 

never rises; in latitudes around 58°N, the Sun rises in the south-east, about 3 

hours before noon, and sets in the south-west, about 3 hours after noon. 

Now, the Moon follows roughly the same path as the Sun 

(ignoring its orbital tilt) but it takes only a month to trace the path which the 

Sun takes in a year. 

The Sun moves about 1° a day (360° in 365.25 days) 

The Moon lags behind the Sun by about 12.2° a day, so you can work out the 

date on which the Sun will be at the point where the Moon now is. 

This means you can estimate roughly how long the Moon will be above the 

horizon. 

Having already calculated the time at which it will cross the meridian, you can 

now estimate its rising and setting times. 

This will not be very accurate. 

But it should be sufficient to determine, for example, whether a particular 

night's observing will be affected by moonlight  
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Exercise : 12a 

The Moon was New on December 25th, 2000. 

At St.Andrews, on January 1st 2001, 

the Sun crossed the meridian at 12:15. 

At what time did the Moon cross the meridian? 

On January 1st, 7 days had elapsed since New Moon 

(the Moon was "7 days old"). 

So the Moon was lagging the Sun by 7x48.8 minutes = 5h42m. 

So it would cross the meridian at 12:15 + 5h42m = 17:57. 

In fact it crossed the meridian at 17:24, so our calculation is in error by 33 

minutes. 

The error is due to: 

(a) not knowing the exact time of New Moon on December 25th 

(b) the Moon's motion not being constant. 

.Exercise:12b 

Given the data in the previous exercise, 

estimate the times of moonrise and moonset  

at St.Andrews on January 1st 2001. 

We know that the Moon was 7 days old, 

so it was 7x12.2° = 85° east of the Sun. 

It would take the Sun about 85 days to reach this point: 

it would get there on 26th March, 

very close to the Spring Equinox. 

So the Moon would have been close to the celestial equator, 

and it would rise about 6 hours before it transited across the meridian, 

and set about 6 hours after. 

We have already determined that the Moon crossed the meridian at 17:57. 

So it should rise at 17:57 – 6 hours = 11:57 

and it should set at 17:57 + 6 hours = 23:57 

In fact it rose at 11:56 and set at 23:06. 

This approximate calculation has shown us that, on January 1st 2001,  

the Moon would be rising about midday, 

and setting again around midnight. 



Copyright : Fiona Vincent 1998.  Revised and updated on 2003. Converted to .pdf  by Alfonso Pastor on 2005 and revised on 2015 

50 

 

Exercise: 12c 

Here is an example where you can deduce a great deal 

from very little information: 

At a point with latitude near 58°N, 

the Last-Quarter Moon is seen rising in the north-east. 

What time of day is it? 

What time of year is it? 

If the Moon is at Last Quarter, 

it is lagging 18 hours behind the Sun -  

alternatively, it is 6 hours ahead of the Sun. 

The Sun crosses the meridian at noon, 

so the Moon must be crossing the meridian at 6 am. 

At this latitude, if it is rising in the north-east,  

it must be at its most northern point, 

so it will be rising about 9 hours before it crosses the meridian. 

So it must be rising about 9 pm. 

The Moon is at its most northern point: 

the point the Sun only reaches at midsummer 

(that is RA = 6h; declination = +23.4°). 

And if the Moon is at Last Quarter,  

it has travelled three-quarters of the way around the sky from the Sun. 

So it is 270° east of the Sun -  

alternatively, it is 90° west of the Sun. 

So the Moon is where the Sun was 90 days ago. 

So the Sun must presently be at  

(summer solstice + 90 days) = autumn equinox. 

(Space left intentionally blank for notes) 
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Positional Astronomy:Chapter 13  
Refraction 

The apparent position of an object in the sky may be changed by several 

different physical effects. One of these is refraction.The speed of light 

changes as it passes through a medium such as air.  

We define the refractive index of any transparent medium as 1/v, 

where v is the speed of light in that medium.  

The speed of light in air depends on its temperature and its pressure,  

so the refractive index of the air varies in different parts of the atmosphere.  

(Space left intentionally blank for notes) 
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Make a simple model of the atmosphere as n layers of uniform air above a flat Earth, with a different 

velocity of light vi for each layer (i from 1 to n).  

Apply Snell's Law of Refraction at each boundary. 

 

At the first boundary, sin(i1) / sin(r1) = v0 / v1 .  

At the next boundary, sin(i2) / sin(r2) = v1 / v2 , and so on.  

But, by simple geometry, r1 = i2, r2 = i3 and so on.  

So we have  

sin(i1) = (v0 / v1) sin(r1)  

          = (v0 / v1) sin(i2)  

          = (v0 / v1) (v1 / v2) sin(r2)  

          = (v0 / v2) sin(r2)  

          = ..........  

          = (v0 / vn) sin(rn)  
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In other words, the refractive indices of the intervening layers all cancel out.  

The only thing that matters is the ratio between v0 , which is c, ( the speed of 

light in vacuum)  and vn (the speed in the air at ground level).  

Now rn is the apparent zenith distance of the star, z',  and i1 is its true zenith 

distance, z. 

So sin(z) = (v0 / vn) sin(z'). 

Refraction has no effect if a star is at the zenith (z=0).  

But at any other position, the star is apparently raised; the effect is greatest at 

the horizon.  

Define the angle of refraction R by   R = z - z'.  

Rearrange this as z = R + z'.  

Then sin(z) = sin(R) cos(z') + cos(R) sin(z').  

We assume R will be small, so, approximately, 

sin(R) = R (in radians), and cos(R) = 0.  

Thus, approximately,  

     sin(z) = sin(z') + R cos(z').  

Divide throughout by sin(z') to get  

     sin(z)/sin(z') = 1 + R/tan(z')  

which is to say,  

     v0/vn = 1 + R/tan(z').  

So we can write  

     R = (v0/vn - 1) tan(z') 

We write this as 

     R = k tan(z') 
where k = (v0/vn - 1) 

Here v0 is c, the velocity of light in a vacuum, which is constant.  

But vn depends on the temperature and pressure of the air at ground level.  

At "standard" temperature (0°C = 273K) and pressure (1000 millibars), 

     k = 59.6 arc-seconds.  

The formula in the Astronomical Almanac is  

     k = 16.27" P / (273 + Tº)  

where P is in millibars, and T is in °C. 

At large zenith distances, the model is inadequate.  

The amount of refraction near the horizon is actually determined 

observationally.  

At standard temperature and pressure, refraction at the horizon is found to be 

34 arc-minutes. ( Horizon or Horizontal refraction) 
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Exercise: 13 

A star is at Right Ascension 5h 0m and declination +26°20'.  

The latitude φ is +56°20'.  

Local Sidereal Time is 5h 0m. 

Atmospheric pressure is 1050 millibars,  

and the temperature is +5°C.  

What is the star’s true altitude? 

LST = RA, so the star is on the local meridian,  

so altitude a = (90°-φ) + δ = 60°. 

How much will the star’s image be shifted by atmospheric refraction,  

and in which direction? 

Zenith distance z = 90°-altitude = 30°. 

Angle of refraction R = k tan(z')  

where k = 16.27" P/(273+T) = 16.27" x 1050 /278 = 61.45". 

However, we don't know z', only z. 

For a first, approximate answer, take z = z' = 30°. 

This gives R = 35.5",  

so z' = z+R = 30° 0' 35.5". 

Now recalculate R = k tan(z') = 35.5"  

(unchanged, so no need to iterate further). 

So the star is raised by 35.5".  
 

What will be the star’s Right Ascension and declination,  

corrected for refraction? 

Since the star is on the local meridian, the shift is only in declination. 

The apparent altitude is increased by 35.5",  

so the apparent declination is similarly increased. 

So the apparent coordinates are: 

Right Ascension 5h 0m and declination +26°20'35.5". 
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Positional Astronomy: Chapter 14 
Sunrise, sunset and twilight 

The time between the object crossing the horizon, and crossing the meridian. 

is the semi-diurnal arc H: 

Since refraction affects zenith angle,  

it generally changes both the Right Ascension and declination of an object.  

It also affects the time the object appears to rise and set.  

The standard formula for the altitude of an object is: 

sin(α) = sin(δ)sin(φ) + cos(δ) cos(φ) cos(H) 

If a = 0° (the object is on horizon, either rising or setting),  

then this equation becomes:  

cos(H) = - tan(φ) tan(δ) 

Knowing the Right Ascension of the object, and its semi-diurnal arc,  

we can find the Local Sidereal Time of meridian transit,  

and hence calculate its rising and setting times.  

However, refraction means that this simplified formula is not accurate,  

since the altitude should be, not 0°, but -0°34'.  

This is not too important for stars, which are rarely observed close to the 

horizon.  

But it makes an important difference in calculating the times of rising and 

setting of the Sun. 

Furthermore, "sunrise" and "sunset" generally refer to the moment  

when the top of the Sun's disc is just on the horizon. 

The formula would give us the time of rising or setting 

for the centre of the Sun's disc.  

So we must also allow for the semi-diameter of the Sun's disc,  

which is 16 arc-minutes.  

So sunrise and sunset actually occur when the Sun has altitude -0°50'  

(34' for refraction, and another 16' for the semi-diameter of the disc). 

Since the atmosphere scatters sunlight, the sky does not become dark instantly 

at sunset; there is a period of twilight.  
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Civil twilight, Sun's altitude is -6°.  It is still enough light to carry on ordinary 

activities out-of-doors; this continues until the:  

Nautical twilight, Sun's altitude is -12°. It is dark enough to see the brighter 

stars, but still light enough to see the horizon, enabling sailors to measure 

stellar altitudes for navigation; this continues until the.  

Astronomical twilight, Sun's altitude is -18°.  There is still  too much  light in 

the sky for making reliable astronomical observations; this continues until the  

Astronomical darkness Sun is more than 18° below the horizon. Is when  the 

Astronomicalobservation can best be made. 

The same pattern of twilights repeats, in reverse, before sunrise. 

In summer, astronomical twilight will last all night, for any place with latitude 

above 48.6°. 

(Space left intentionally blank for notes) 
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Exercises: 14  a, b and c 

Exercise: 14a 

The Sun is at declination -14°.  

What will be its hour angle at sunrise  

(the moment the top edge of the Sun first appears over the horizon),  

at a latitude of +56°20'? 

At sunrise, the true altitude of the Sun is a = -0°50'  

(allowing for semi-diameter and horizontal refraction). 

Use the formula  

cos(H) = { sin(a) - sin(φ) sin(δ) } / cos(φ) cos(δ) 

where φ = +56°20' and δ = -14°. 

This gives cos(H) = 0.35,  

so H = 69.7° or 290.3°  

= 4h39m or 19h21m. 

To decide which,  

note that the Sun is to the east of the meridian at sunrise,  

so H = 19h21m. 

Exercise: 14b 

If the Sun is on the local meridian at 12:03,  at what time is sunrise?  

and at what time is sunset? 

The semi-diurnal arc is 4h39m. 

Sunrise is at (12:03 - 4h39m) = 07:24. 

Sunset is at (12:03 + 4h39m) = 16:42. 

Exercise: 14c 

And when will astronomical twilight start and finish? 

It is astronomical twilight  

if the Sun’s altitude is -18° or higher. 

Set a = -18° and use the same formula again, to obtain 

H = 101.55° = 6h46m. 

So twilight starts at (12:03 - 6h46m) = 05:17,  

and ends at (12:03 + 6h46m) = 18:49. 
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Positional Astronomy: Chapter 15 
Geocentric or diurnal parallax 

Refraction affects the apparent altitude of a star.  

But there are other phenomena that affect its apparent position, too. 

One of these is parallax. 

Refraction decreases the zenith angle, but parallax increases it.  

Our observations are made from the surface of the Earth, not its centre.  

This is irrelevant when observing distant objects such as stars.  

But for closer objects (e.g. within the Solar System), a correction must be 

made.  

This is geocentric parallax, or diurnal (daily) parallax  

(since it varies daily as the Earth spins around its axis).  

 

To an observer at O, the zenith angle of object S appears to be z'.  

Its true zenith angle, as seen from the centre of the Earth C, is z, which is 

smaller.  

Parallax is greatest for an observer at O1, where the object appears to be on the 

horizon.  
(Space left intentionally blank for notes) 
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We define the angle of parallax p by p = z'-z.  

 

If a is the Earth's radius, and r is the geocentric distance to the object,  

then the plane triangle OCS gives:  

     sin(p) / a = sin(180°-z')  /  r = sin(z') / r  

that is:  

     sin(p) = (a / r) sin(z')  

Parallax is greatest at O1, where z'=90°. 

The parallax here is called the horizontal parallax, designated by P = 90°-z, 

where : 

     sin(P) = a / r.  

For small angles, we may take: 

 P = a / r,  

where P is measured in radians. 

In the general case, we may replace the term (a/r) by sin(P), and write  

     sin(p) = sin(P) sin(z')  

or, since angles of parallax are generally small,  

     p = P sin(z')  

Apart from occasional near-earth asteroids, the Moon is the nearest natural 

object, with average P around 57 arc-minutes.  

So for calculating times of moonrise and moonset, we must use an altitude: 

0° - 16' [semi-diameter] - 34' [refraction] + 57' [horizontal parallax]  = +7'.  

Allowing for lunar parallax is essential when predicting occultation of stars by 

the Moon  (and, of course, solar eclipses).  

The Earth is not actually spherical.  

For more accurate calculations, we use the geoid:  

Geoid is a spheroidal solid which closely approximates the Earth's true shape.  

For any particular latitude, this gives corrected values for geocentric distance 

a and geocentric latitude. L 
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Exercise: 15a 

A minor planet passes very near the Earth,  

at a distance of 200,000 km.  

What will be its horizontal parallax?  

(Take the Earth to be a sphere of radius 6378 km.) 

Horizontal parallax P = a/r radians,  

where a = 6378 km, r = 200,000 km. 

So P = 0.0319 radians = 1.827° 

At St.Andrews (latitude +56°20'),  

the minor planet is observed to cross the meridian  

at an apparent altitude of +35°.  

What does its declination appear to be? 

Meridian altitude a = (90°-φ) + δ  

So the apparent declination is 

δ = a - (90°-φ) = +1°20' 

What is its true declination, after correcting for geocentric parallax? 

Apparent altitude = 35° 

so apparent zenith angle z'= 55°. 

Angle of parallax p = P sin(z') = 1.497° 

Parallax increases the zenith angle.  

The true zenith angle z must be less than the observed zenith angle z'. 

So the true altitude must be greater than the observed altitude.  

So in this case the true declination must be  

greater than the observed declination, by 1.497°, 

making it +2°50'. 

(Space left intentionally blank for notes) 
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Exercise:15b 

The Moon is at declination -14°.  

What will be its hour angle at moonrise  

(when the top edge of the Moon first appears over the horizon),  

at a latitude of +56°20'? 

At moonrise, the true altitude of the Moon is a = +0°7'  

(allowing for semi-diameter, horizontal refraction and geocentric parallax). 

Use the formula  

cos(H) = { sin(a) - sin(φ) sin(δ) } / cos(φ) cos(δ) 

where φ= +56°20' and δ = -14°. 

This gives cos(H) = 0.38,  

so H = 67.8° or 292.2°  

= 4h31m or 19h29m. 

To decide which,  

note that the Moon is to the east of the meridian,  

so H = 19h29m. 

(This is 8 minutes later than sunrise,  

when the Sun is at the same declination.) 

(Space left intentionally blank for notes) 
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Exercise:15c 

Aldebaran is at Right Ascension 4h36m, declination +16°31'.  

At a particular instant, the geocentric coordinates of the Moon  

are also Right Ascension 4h36m, declination +16°31'.  

Local Sidereal Time at St.Andrews (latitude +56°20') is 4h36m. 

What will be the apparent declination of the Moon, after correction for 

parallax?  

(Take the horizontal parallax of the Moon as 57 arc-minutes.) 

Both objects are on the meridian.  

So the Moon’s altitude a = (90°-φ) + δ = 50.18° 

so its true zenith angle z = (90°-a) = 39.82° 

The shift due to parallax is p = P sin(z'), where P = 57', 

and z' is the apparent zenith angle. 

However, we only know z, the true zenith angle. 

For a first approximation, take z' = z = 39.82° 

Then p = 57' sin(39.82°) = 36.5' = 0.61°. 

This would make apparent zenith angle z' = 39.82° + 0.61° = 40.43°. 

Re-calculate p = 57' sin(40.43°) = 37.0' = 0.62°.  

No need to re-calculate again. 

The apparent altitude will be 37' lower,  

due to geocentric parallax,  

and so the apparent declination will also be 37' lower. 

So the Moon’s apparent declination will be  

+16°31' - 37' = +15°54'. 

The semi-diameter of the Moon’s disc is 16 arc-minutes.  

Will observers at St.Andrews see the Moon occult Aldebaran? 

Aldebaran is still at Right Ascension 4h36m, declination +16°31'  

(unaffected by geocentric parallax).  

The top edge of the Moon will appear to be at declination  

+15°54' + 16' = +16°10'  

So the top edge of the Moon will appear to pass 21' below Aldebaran: 

there will be no occultation.  
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Positional Astronomy: Chapter 16 
Annual parallax 
Geocentric or diurnal parallax varies with the daily spinning of the Earth around its axis.  

Annual parallax is caused by the Earth's yearly orbit around the Sun. 

The Earth shifts by 2a from side to side, where: 

 a is the radius of the Earth's orbit (assumed circular) = 1 Astronomical Unit.  

 
For the star S1, the maximum shift occurs as the Earth moves from position E1 

to E2.  

If the distance between the Sun and the star S1 is r, then we define:  

 annual parallax as Π, where:  tan(Π) = a/r. 

 

And since a/r is always extremely small, we may write:  

Π = a/r (in radians). 
 

If the star is not at S1, but at some other arbitrary position S2, then the shift in 

position as Earth moves from E1 to E2 will appear less. 

Let the direction from the Sun to the star make an angle θ with the line E1E2 . 

the star appears at angle θ' from Earth at E1. 

By plane trigonometry,  

 

     sin(θ-θ')/a = sin(θ')/r  

so 

     sin(θ-θ') = sin(θ') a/r 

                  = sin(θ') sin(Π) 

Since (θ-θ') is a very small angle, we can replace θ' by θ, and write  

 

     θ-θ' = Π sin(θ) 

 

The apparent shift is towards the Sun, and it alters the star's ecliptic longitude 

λ (so this is another occasion for using ecliptic coordinates).  

If the star is not in the plane of the ecliptic, there is a shift in ecliptic latitude β 

too. 
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The star X at (λ, β) is shifted to X' at (λ+Δλ, β+Δβ) along a great circle arc 

towards the position of the Sun S.  

XX' is the parallactic shift Π sin(θ).  

We need to find the shifts Δλ and Δβ.  

UX is the arc of a small circle centred on the ecliptic pole K, passing through 

the star X.  

The length of arc UX is Δλ cos(β) – the shift in longitude.  

The length of arc UX' is -Δβ – the shift in latitude. 

Consider the tiny triangle UXX' as a plane right-angled triangle, and denote 

the angle at X by the arbitrary symbol ψ:  

UX = XX' cos(ψ) = Π sin(θ) cos(ψ)  

UX' = XX' sin(ψ) = Π sin(θ) sin(ψ) 

In other words,  

Δλ cos(β) = Π sin(θ) cos(ψ)  

Δβ = -Π sin(θ) sin(ψ)                                    (equations 1) 

To eliminate θ and ψ from these two equations, we use the spherical triangle 

KXS. 

First, by the sine rule:  

sin(90°+ψ/sin(90°) = sin(λS-λ)/sin(θ)  

i.e. sin(θ) cos(ψ) = sin(λS-λ)                           (expression 2)  

where λS is the ecliptic longitude of the Sun. 

Then, by the cosine rule:  

cos(90°) = cos(θ) cos(90°-β) + sin(θ) sin(90°-β) cos(90°+ψ)  

i.e. 0 = cos(θ) sin(β) - sin(θ) cos(β) sin(ψ)  

So: sin(θ) sin(ψ) = cos(θ) sin(β)/cos(β) 
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To get rid of the cos(θ) on the right-hand side of this expression, we use the 

cosine rule again:  

cos(θ) = cos(90°-β) cos(90°) + sin(90°-β) sin(90°) cos(λS-λ)  

i.e. cos(θ) = cos(β) cos(λS-λ) 

Substituting this expression for cos(θ) in the previous equation:  

sin(θ) sin(ψ) = cos(β) cos(λS-λ) sin(β) /cos(β)  

i.e. sin(θ) sin(ψ) = cos(λS-λ) sin(β)                                        (expression 3) 

Now we can substitute these expressions (2) and (3) in equations (1), to get: 

Δλ cos(β) = Π sin(λS-λ) 

Δβ = Π cos(λS-λ) sin(β) 

This is actually the formula for an ellipse, of the form:  

x = a cos(θ), y = b sin(θ)  

where x is the shift parallel to the ecliptic [ Δλ cos(β) ]  

y is the shift perpendicular to the ecliptic [ Δβ ]  

and θ is temporary shorthand for [ 90° - (λS-λ) ].  

So we have a = Π and b = Π sin(β) 

In other words, this parallactic ellipse has semi-major axis Π, parallel to the 

ecliptic, and semi-minor axis Π sin(β), perpendicular to the ecliptic.  

So, during the year, the star appears to trace out a parallactic ellipse, which is 

a reflection of the Earth's orbit.  

For a star on the ecliptic (β = 0°) it reduces to a straight line;  

for a star at the pole of the ecliptic (β = 90°) it becomes a circle.  

The size of a star's parallactic ellipse yields its distance,  

in units of parsecs (parallax-seconds):  

r (in parsecs) = 1 / Π (in arc-seconds),  

so a star at 1 parsec would have parallax Π = 1 arc-second.  

(In fact, no star is this close.) 

(Space left intentionally blank for notes) 
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Exercise: 16 

A star’s true position is  

Right Ascension 6h 0m 0s, declination 0° 0' 0", 

and it lies at a distance of 25 parsecs. 

On the date of the Spring Equinox,  

how far will it appear to be shifted by annual parallax,  

and in what direction? 

First convert from RA and dec. into ecliptic coordinates.  

sin(δ) = sin(β) cos(ε) + cos(β) sin(ε) sin(λ)  

sin(β) = sin(δ) cos(ε) - cos(δ) sin(ε) sin(α)  

cos(λ) cos(β) = cos(α) cos(δ)  

where α = 6h0m = 90°, δ = 0° 

So this star has λ = 90°, β = -ε = -23°26'. 

Its distance = 25 pc, so annual parallax Π = (1/25)" = 0.040" 

At the spring equinox, the Sun has ecliptic longitude λS = 0°  

so λS-λ = -90°. 

Δλcosβ = Π sin(λS-λ) = 0.040"  

cosβ = 0.918  

so Δλ = 0.044".  

Δβ= -Π cos(λS-λ) sinβ = 0 

So star is shifted 0.044" eastwards, by parallax. 

(Space left intentionally blank for notes) 



Copyright : Fiona Vincent 1998.  Revised and updated on 2003. Converted to .pdf  by Alfonso Pastor on 2005 and revised on 2015 

67 

 

Positional Astronomy: Chapter 17 
Aberration 

Early attempts to measure the distances of the stars, by observing their 

parallactic ellipses, were unsuccessful because the stars are so far away, and 

their parallaxes are extremely small. 

However, another effect was discovered instead: aberration. 

This is caused by the fact that light moves at a finite velocity, c. 

The apparent direction that light comes to us from a star is a combination of 

its true direction and the direction the Earth is moving. 

Stars appear to be shifted slightly in the direction of the Earth's motion. 

(This is analogous to the way a person walking through the rain 

has to hold their umbrella tilted forwards.)  

 

Take the Earth's velocity as v.  

During a time-interval t,  

Earth moves a distance vt, while light travels a distance ct down the telescope.  

By plane trigonometry,  

sin(θ-θ')/vt = sin(θ')/ct  

where θ is the true angle between the direction to the star, and the direction 

the Earth is moving around the Sun,  

and θ' is the observed angle. 

Since vt is very small compared to ct,  

θ' is very nearly equal to θ.  

So we may write sin(θ-θ')/vt = sin(θ)/ct  

i.e. sin(θ-θ') = sin(θ) v/c 
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Because the ratio v/c is very small,  

sin(θ-θ') is approximately equal to θ-θ' (in radians),  

so we may write:  

θ-θ' = sin(θ) v/c = k sin(θ)  

where k, the constant of aberration, is 20.5 arc-seconds.  

 

 

But in which direction is the Earth moving? 

Taking the Earth's orbit as circular,  the tangent is always at right-angles to the 

radius. 

So the direction of the Earth's motion is always at 90° to the direction of the 

Sun.  

Thus F, the "apex of the Earth's way", is on the ecliptic, 90° behind the Sun.  

i.e. λF = λS – 90°. 

(Space left intentionally blank for notes) 
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The geometry is very similar to the parallax problem, with the following 

differences:  

(i) we must write λF instead of λS .  

(ii) θ-θ' is now the aberrational shift k sin(θ),  

      not the parallactic shift Π sin(θ),  

      so we replace Π by k. 

So we find:  

Δλ cos(β) = k sin(λF-λ) = -k cos(λS-λ)  

Δβ = -k cos(λF-λ) sin(β) = - k sin(β) sin(λS-λ) 

Again this is the formula for an ellipse of the form: 

x = a cos(θ), y = b sin(θ)  

where θ is now temporary shorthand for (λS-λ).  

The aberrational ellipse has  

semi-major axis k, parallel to the ecliptic, and semi-minor axis k sin(β), 

perpendicular to the ecliptic.  

There are two important differences between the parallactic and aberrational 

ellipses:  

1) The aberrational ellipse is much bigger.  (k is 20.5 arc-seconds, whereas 

parallax is always less than 1 arc-second.)  

Also the major axis of the aberrational ellipse is the same for all stars,  

whereas the major axis of the parallactic ellipse depends on the star's distance.  

2) The phase is different. When the Sun has the same longitude as the star, 

then the longitude shift is zero in the parallactic ellipse,  but the latitude shift 

is zero in the aberrational ellipse.  

So far, we have been assuming that the Earth's orbit is circular, and hence the 

value of k = v/c is constant; in fact the orbit is elliptical, and this means the 

velocity v varies with time.  
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The velocity ET in any elliptical orbit can be resolved into two components: 

     EF = h/p, perpendicular to the radius vector,  

     EG = eh/p, perpendicular to the major axis of the ellipse.  

The values of EF and EG are both constant. 

It's the changing angle between these two constant components  

which causes the orbital velocity to vary (Kepler's Second Law). 

Here, EF is the velocity for a circular orbit, as assumed above.  

EG adds second-order terms, 0.3 arc-seconds or less,  

which are independent of Earth’s position,  

and depend only on the star’s position. 

 

A star itself also has its own proper motion across the sky,  

but this is always small and generally not known,  

so it is often ignored. 

However, for objects within the solar system,  

the motion is usually known, and is too large to ignore.  

So astrometric observations of a planet have to be corrected for light-time:  

During the time between the light is leaving the planet, and being measured on 

Earth,  the planet may have moved a significant distance.  

Annual aberration and light-time are sometimes grouped together  

and they are called planetary aberration,  

in which case annual aberration alone is called stellar aberration. 
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Exercise:17 

A star’s true position is  

Right Ascension 6h 0m 0s, declination 0° 0' 0". 

On the date of the Spring Equinox,  

how far will it appear to be shifted by aberration,  

and in what direction? 

First convert from RA and dec. into ecliptic coordinates. 

This star has ecliptic longitude λ = 90°,  

and ecliptic latitude β = -ε = -23°26'. 

At the spring equinox, the Sun has ecliptic longitude λS = 0° 

so λS-λ = -90°. 

Δλ cosβ = -k cos(λ S-λ) = 0  

so Δλ = 0. 

Δβ= - k sin(λS-λ) sinβ = 0  

where k = 20.5" and β = -23°26'.  

so Δβ= +8.15". 

So star is shifted 8.15" northwards, by aberration. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 18 
Precession 

So far, this series of pages has considered how we assign coordinates to any 

point in the sky and the various physical effects that may alter its apparent 

position. 

But there is a more profound problem with the way we determine coordinates, 

relative to the celestial equator and the ecliptic, since these are not 

permanently fixed. 

 

 

The Earth’s axis is tilted to its orbital plane.  

The gravitational pull of the Sun and the Moon on the Earth’s equatorial bulge 

tend to pull it back towards the plane of the ecliptic.  

Since the Earth is spinning, its axis precesses.  

The North Celestial Pole traces out a precessional circle around the pole of 

the ecliptic, and this means that the equinoxes precess backwards around the 

ecliptic, at the rate of 50.35 arc-seconds per year (around 26,000 years for a 

complete cycle). 

(Space left intentionally blank for notes) 
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Around 2000 years ago,  

the Sun was in the constellation of Aries at the spring equinox,  

in Cancer at the summer solstice,  

in Libra at the autumn equinox,  

and in Capricorn at the winter solstice.  

Precession means that all of these have changed,  

but we still use the old names  

(e.g. the First Point of Aries for the vernal equinox),  

and the symbols for the vernal and autumnal equinoxes  

are the astrological symbols for Aries and Libra. 

Precession is caused by the Sun and the Moon. 

However, the Moon does not orbit exactly in the ecliptic plane, but at an 

inclination of about 5° to it.  

The Moon’s orbit precesses rapidly,  with the nodes taking 18.6 years to 

complete one circuit.  

The lunar contribution to luni-solar precession adds a short-period, small-

amplitude wobble to the precessional movement of the North Celestial Pole. 

This wobble is called nutation. 
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Ignoring nutation,  Luni-solar precession simply adds 50.35 arc-seconds per 

year to the ecliptic longitude of every star,  leaving the ecliptic latitude 

unchanged. 

This definition assumes the ecliptic itself is unchanging.  

In fact, the gravitational pull of the other planets perturbs the Earth’s orbit and 

so it gradually changes the plane of the ecliptic.  

 

If the equator were kept fixed, the movement of the ecliptic would shift the 

equinoxes forward along the equator by about 0.13 arc-seconds per year.  

 

This is planetary precession, which decreases the Right Ascension of every 

star by 0.13 arc-seconds per year, leaving the declination unchanged.  

Combining Luni-solar and planetary precessions gives general precession. 

(Lunar nutation and planetary precession also produce slight changes in the 

obliquity of the ecliptic)  

Because of precession, our framework of Right Ascension and declination is 

constantly changing.  

Consequently, it is necessary to state the equator and equinox of the 

coordinate system to which any position is referred.  

Certain dates (e.g. 1950.0, 2000.0) are taken as standard epochs, and used for 

star catalogues etc.  

To point a telescope at an object on a date other than its catalogue epoch, it is 

necessary to correct for precession.  

Recall the formulae relating equatorial and ecliptic coordinates:  

      sin(δ) = sin(β) cos(ε) + cos(β) sin(ε) sin(λ)  

      sin(β) = sin(δ) cos(ε) - cos(δ) sin(ε) sin(α)  

      cos(λ) cos(β) = cos(α) cos(δ) 

Luni-solar precession affects the ecliptic longitude λ. 

 

The resulting corrections to Right Ascension and declination can be worked 

out by spherical trigonometry.  

But here we use a different technique. 

Consider luni-solar precession first, recalling that it causes λ to increase at a 

known, steady rate dλ/dt, while β and ε remain constant. 
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To find how the declination δ changes with time t, take the first equation and 

differentiate it:  

      cos(δ) dδ/dt = cos(β) sin(ε) cos(λ) dλ/dt  

To eliminate β and λ from this equation, use the third equation:  

      cos(δ) dδ/dt = cos(α) sin(ε) cos(δ) dλ/dt  

i.e.  dδ/dt = cos(α) sin(ε) dλ/dt 

To find how the Right Ascension α changes with time, take the second 

equation and differentiate it:  

0 = cos(ε) cos(δ) dδ/dt + sin(ε) sin(δ) dδ/dt sin(α) - sin(ε) cos(δ) cos(α) dα/dt  

i.e. sin(ε) cos(δ) cos(α) dα/dt = dδ/dt [ cos(ε) cos(δ) + sin(ε) sin(δ) sin(α) ] =         

 cos(α) sin(ε) dλ/dt [cos(ε) cos(δ) + sin(ε) sin(δ) sin(α) ]  

Cancelling out sin(ε) and cos(α) from both sides gives:  

      cos(δ) dα/dt = dλ/dt [ cos(ε) cos(δ) + sin(ε) sin(δ) sin(α) ]  

Dividing through by cos(δ) gives:  

      dα/dt = [ cos(ε) + sin(ε) sin(α) tan(δ) ] dλ/dt 

So if Δλ is the change in λ in a given time interval Δt, the corresponding 

changes in α and δ are  

      Δα = Δλ [ cos(ε) + sin(ε) sin(α) tan(δ) ]  

      Δδ = Δλ cos(α) sin(ε) 

This is the effect of Luni-solar precession.  

We also have to add in the planetary precession, which decreases the RA by a 

quantity a, during the same time interval.  

The combination is general precession:  

      Δα = δλ [ cos(ε) + sin(ε) sin(α) tan(δ) ] - a  

      Δδ = Δλ cos(α) sin(ε) 

To make this easier to calculate in practice, we introduce two new variables, 

m and n:  

       m = Δλ cos(ε) - a  

       n = Δλ sin(ε) 

These quantities m and n are almost constant; they are given each year in the 

Astronomical Almanac.  

The values for 2000 are approximately:  

     m = 3.075 seconds of time per year  

      n  = 1.336 seconds of time per year = 20.043 arc-seconds per year 
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We can now write:  

      Δα = m + n sin(α) tan(δ)  

      Δδ = n cos(α) 

which means that, if you know the equatorial coordinates of an object at one 

date, you can calculate what they should be at another date, as long as the 

interval is not too great (20 years or so).  

 

If the object is a star whose proper motion is known, then that should be 

corrected for as well. 

Alternatively, the Astronomical Almanac lists Besselian Day Numbers 

throughout the year.  

Take a star’s equatorial coordinates from a catalogue, and compute various 

constants from these, as instructed in the Astronomical Almanac.  

Combine these with the Day Numbers for a given date, to produce the 

apparent position of the star, corrected for precession, nutation and aberration. 

(Space left intentionally blank for notes) 
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Exercise: 18a  
The Vernal Equinox occurs nowadays when the Sun is in the constellation of 

Pisces. 

Pisces covers a section of the ecliptic from longitude 352° to longitude 28°; at 

longitude 28° the ecliptic passes into Aries.  

How many years would we have to go back, to find the Sun at “the First Point 

of Aries” at the Vernal Equinox? 

 
 

 
 

 

The equinoxes regress along the ecliptic at 50.35" per year. 

So the " 0° " point moves westwards against the constellations. 

It has moved 28° into Pisces, at a rate of 50.35" per year. 

Divide 28° by 50.35" to get: 2002 years ago. 

 

Exercise:18b 

The coordinates of the Galactic North Pole are given officially as  

α = 12h49m00s, δ = +27°24'00",  

relative to the equator and equinox of 1950.0. 

What should they be,  

relative to the equator and equinox of 2000.0?  

(For this calculation, take the values of m and n for the year 1975: 

m = 3.074s per year; 

n = 1.337s per year = 20.049" per year.) 

The formulae are:  

     Δα = m + n sin(α) tan(δ) 

     Δδ = n cos(α) 

Substitute the coordinates given in the question:  

     α1950 = 12h49m00s = 192.25°,  

     δ1950 = +27°24'00" = 27.40°, 

to get  

     Δα = 2.927s per year, or +146.348s in 50 years. 

     Δδ = -19.59" per year, or -979.63" in 50 years. 

Add these to the 1950 values of α and δ, to get  

     α2000 = 12h51m26s 

     δ2000 = +27°07'40"  
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Positional Astronomy: Chapter 19 

Calendars 

The current standard epoch for star catalogues etc. is J2000.0;  the previous 

one was B1950.0.  

In this context, “B” signifies a Besselian year, which begins when the mean 

longitude of the Sun is exactly 280°;  this always occurs very close to the start 

of the calendar year, but not always at the same instant.  

For example, “B1950.0” represents the instant 1950 January 0.9235. 

“J” signifies a Julian year, which is exactly 365.25 days long.  

“J2000.0” represents midday on 2000 January 1, and every other Julian year 

begins at an exact multiple of 365.25 days from then.  

In 1984 the International Astronomical Union recommended  that star 

positions should be calculated on the basis of Julian years rather than 

Besselian ones. 

Julian years are named for Julius Caesar, who is credited with the first reform 

of the calendar.  

The year (more accurately, the “tropical year”), is measured from one spring 

equinox to the next, an interval of 365.2421988 mean solar days.  

In the Julian calendar, most years have 365 days, with an extra day every 

fourth year (called a leap-year), thus averaging 365.25 days to a year, with an 

error of 1 day every 128 years. 

By the 16th century, the accumulated error was 10 days. Pope Gregory XIII 

introduced the Gregorian calendar, where century years are only leap-years 

if they are divisible by 400; thus 1900 was not a leap-year, but 2000 was.  

The Gregorian year thus averages 365.2425 days to a year, with an error of 1 

day every 3320 years.  

The extra 10 days were arbitrarily omitted. 1582 October 4th being followed 

by 1582 October 15th.  

The Gregorian calendar was adopted in different countries at various different 

dates over the next 350 years. 

To avoid complications in calculating calendar dates, astronomers number 

days in a continuous sequence called the Julian Date (JD).  

(This system was devised by the French astronomer Joseph B. Scaliger, in 

1582; he named it, not after Julius Caesar, but after his father - who was 

called Julius Caesar Scaliger.)  
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The sequence of Julian Days starts on January 1st, 4713 BC, so that all known 

astronomical records have positive values of JD.  

The Julian date changes at midday, so that (in European countries)  all 

observations on a particular night have the same Julian date.  

Midday on 2000 January 1st was JD 2451545.0. 

JD must be given to 5 decimal places for an accuracy of 1 second of time.  

A number in this format can cause problems in computing, so many modern 

applications use the Modified Julian Date (MJD), where: 

 Modified Julian Date (MJD) = MJD = JD - 2400000.5  

 That means: MJD, like the calendar date, changes at midnight. 0h on 2000. 

January 1st was MJD 51544.0 . 

Exercise:19 

When the Gregorian calendar was introduced in 1582,  

the accumulated error in the Julian calendar was 10 days.  

What was the error by the time the Gregorian calendar was adopted in Turkey, 

in 1927? 

1600 was a leap-year in both calendars,  

but 1700, 1800 and 1900 were not leap-years in the Gregorian calendar.  

Thus the Julian calendar was 13 days adrift, by 1927. 

(Space left intentionally blank for notes) 
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Positional Astronomy: Chapter 20 

 

Exercise: 20 Final. 

 

You are lost on a desert island with a sextant, a chronometer, a carrier pigeon,  

and your copy of Smart's Spherical Astronomy.  

Explain how you will save yourself.  

(Assume that the chronometer is keeping GMT, and that you know the date.) 

 

Step 1: determine your latitude.  
There are (at least) two possible techniques.  

1. Measure the altitude of Polaris above the northern horizon, using the sextant.  

This is approximately equal to your latitude.  

(Polaris, the "North Star", lies very close to the North Celestial Pole.) 

There are various problems with this.  

     Firstly, if you are in the southern hemisphere, Polaris will be below the horizon!  

     Secondly, you need to carry out the measurement in nautical twilight, while it is still 

light enough to see the horizon, and Polaris is only a second-magnitude star, so it may 

not appear bright enough to measure accurately.  

     Thirdly, Polaris does not lie exactly at the North Celestial Pole, so your result could 

be nearly 1 degree in error.  

2. So, as an alternative: measure the altitude of the Sun at midday, using the sextant.  

Knowing the date, calculate the declination of the Sun  (it varies sinusoidally,  with a 

period of 1 year starting at the spring equinox,  and an amplitude of 23.4 degrees.)  

The midday altitude, when the Sun is on the local meridian, is composed of: the height 

of the celestial equator above the southern horizon (equal to the co-latitude) plus the 

height of the Sun above the celestial equator (its declination).  (If you are in the 

southern hemisphere, the celestial equator will be closer to the northern horizon; in this 

case its distance from the southern horizon, the co-latitude,  will be greater than 90°.)  

Knowing the altitude and the solar declination, calculate the co-latitude and hence the 

latitude.  

If the sextant can be read to an accuracy of a few arc-minutes, you should correct your 

reading for refraction.  

The apparent zenith angle of an object z' is greater than its true zenith angle z  by the 

value k tan(z'), where k is approximately 1 arc-minute.  
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Step 2: Determine your longitude.  

Again there are (at least) two possible techniques.  

1. During nautical twilight, if you can locate a star whose celestial coordinates you 

know, measure its altitude above the horizon using the sextant, and note the time 

(GMT) using the chronometer.  

Knowing the star's altitude, its declination, and your latitude (previously determined), 

calculate its Hour Angle by applying the cosine rule to "the" Astronomical Triangle.  

Knowing the star's Right Ascension, calculate the local sidereal time of the observation  

(Local Hour Angle = Local Sidereal Time - Right Ascension).  

Knowing the date, calculate the Greenwich Sidereal Time corresponding to the 

Greenwich Mean Time of the observation.  

GST is equal to GMT at the autumn equinox, and GST runs faster than GMT by one 

day in 365.25 days.  

The difference between the Local Sidereal Time (from your observation) and 

Greenwich Sidereal Time (from the chronometer) is your longitude east or west of 

Greenwich.  

2. Failing a star with known coordinates, use the Sun. Note the time (GMT) when it 

reaches its greatest altitude:  this is midday, Local Apparent Time.  

Use the formulae given in Smart's Spherical Astronomy  to calculate the Equation of 

Time on that date.  

(Or derive it from first principles: allow firstly for the non-uniform motion of the Sun 

around the ecliptic (Kepler's Second Law);  then allow for the fact that the ecliptic is 

tilted to the equator.)  

Add or subtract the Equation of Time to your Local Apparent Time, to obtain Local 

Mean Time.  

The difference between Local Mean Time and GMT is your longitude east or west of 

Greenwich.  

Step 3:  

Tear a strip of paper from the title-page of Smart's Spherical Astronomy to write a 

message giving your latitude and longitude.  

Launch it by carrier-pigeon and wait to be rescued!  

This question formed part of the final exam at UCLA in 1961.  

(Trimble, V., "The Observatory" 118, 32, 1998).  
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